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Paternal-Age and Birth-Order Effect on
the Human Secondary Sex Ratio

AVIMA RUDER

SUMMARY

Because of conflicting results in previous analyses of possible mater-
nal and paternal effects on the variation in sex ratio at birth, records of
United States live births in 1975 were sorted by offspring sex, live
birth order (based on maternal parity), parental races, and, unlike
prior studies, ungrouped parental ages. Linear regression and logistic
analysis showed significant effects of birth order and paternal age on
sex ratio in the white race data (1.67 million births; 10,219 different
combinations of independent variables). Contrary to previous re-
ported results, the paternal-age effect cannot be ascribed wholly to the
high correlation between paternal age and birth order as maternal age,
even more highly correlated with birth order, does not account for a
significant additional reduction in sex-ratio variation over that ac-
counted for by birth order alone.

INTRODUCTION

The human secondary sex ratio (male births/all births) is a subject of scientific
interest due to the influence of natural selection and effect of radiation on the
sex ratio, the use of sex-ratio changes to estimate mutation rates, and the
demographic importance of sex-ratio studies [1].

Since even interracial variation in sex ratio fluctuates only between 0.485 and
0.530, less than 5%, only with a very large number of birth statistics can most
variation safely be attributed to effects of the factors being studied rather than
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to small-size sample fluctuation. Many reports on sex ratio have dealt with
sample sizes inadequate for statistical purposes.
Nearly all the large-scale statistical studies of human births have found

significant correlation of sex ratio with birth order. Otherwise, they differ in
data sources, approaches, and conclusions (table 1). Relationships have been
shown-and disputed-for maternal age, paternal age, and birth order with the
variation in sex ratio. Analysis is confounded by the high correlations among
these three factors.

In an early large-scale analysis, Novitski [2] found an association between
increasing paternal age and decreasing sex ratio. Showing that declining sex
ratio correlates more closely with advancing paternal than advancing maternal
age, Novitski and Sandler [3] proposed that a biological basis for the changing
sex ratio might be a shift in the relative frequency of X- and Y-bearing sperm.
Novitski and Kimball [4] tested parental ages and birth order as independent

variables. Their best-fitting quadratic regression models included birth order,
paternal age, and powers or combinations of these two factors as variables. The
Novitski and Kimball study was limited because their data source, the U.S.
Bureau of Vital Statistics, had grouped parental ages in 5-year classes, with
oldest and youngest ages truncated. Reanalyzing the same data, Teitelbaum et
al. [6] compared mean birth order and parental ages of females and males with
Mantel-Haenzel contingency tables [10], finding only a birth order effect. Con-
tingency tables compare means of two or more sample subpopulations, assum-
ing that the data vary about the mean in a random fashion. If monotonic trends
exist within groups, a contingency table analysis may not be adequate [11].

Erickson [7] found a significant partial regression coefficient only for birth
order, but he pointed out that since birth order accounted for only 10% of the
sex-ratio variation in his data, other factors must play a part. Multivariate
analyses of white, singleton, live births by Garfinkel and Selvin [8] indicated
birth order plus parental ages did not account for significantly more variation
than explained by birth order alone.
Data in all these U.S. studies were truncated or grouped, especially for older

and younger parental ages, usually before they were made available to the
analysts. Age cutoffs or groupings can severely bias a multivariate analysis
[12].

METHODOLOGY

The United States National Center for Health Statistics (NCHS) natality data tapes
for over 2 million live births in 1975 include demographic details (personal identification
removed) from 100% of the birth certificates filed in 33 states and a 50% sample from the
other states [13, 14].
We developed a series of FORTRAN computer programs to abridge, sort, and analyze

this large number of records on the University of Oregon Computing Center IBM-360.
While classifying records as: multiple births, births to older (¢ 45) or younger (< 15)
parents, missing age or race data, intraracial, and interracial, our program TRANSFER
eliminated extraneous details to include only mother's residence and education; par-
ents' races and ages; interval since and outcome of last pregnancy; gestation length;
total and live birth order; birthplace, birthdate, child's sex, and birthweight; and plural-
ity.
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Another program, SHUFFLE, sorted births into cells by parental ages and child's birth
order and saved cells with one or more births. Each contained a unique combination of
parental ages and race(s), birth order, and numbers of male and female births. No
sorting or analysis has yet been done for the other parameters in the birth records.
Our logistic analysis program, LOGIT, fits models to the data by an algorithm proposed

by Berkson [15, 16] and by a less time-efficient but reiterative algorithm. The null
hypothesis for logistic analysis follows the binomial distribution. If no independent
factors have an effect, the probability of exactly m males in a sample of n births would
be (n!I(m!(n - m)!))Pm(l - p)f-m. P is the sex ratio in the population that the sample
comes from [17].

Evaluating independent factors, both algorithms sought an intercept (a) and
coefficients (b1, b2, . . , bk) that helped to reduce variation between the observed and
expected (estimated) sex ratios. For the ith different combination of the independent
factors, the estimated sex ratio is

- exp (a + bixi, + b2x2i + ... + bkxkd)
' I + exp (a + b1x1i + b2x2i + ... + bkxkd)

The variable employed for the jth factor, xji, = ith value - mean value.
Other statistical techniques used include: linear regression with the program BMDPIR

[18]; chi-square tests; Fisher's test for samples with large numbers of degrees of free-
dom (n), P(X2 ¢ n) = 0.5, with deviations distributed on N(0,1 for z = V -

(2n - 1) [19]; f-tests for correlations, T = [r\'(n - 2)/[[V(1 - r2)], with r the cor-
relation coefficient and n the sample size, T having a t distribution with n - 2 df; and
f-tests of the significance of a coefficient: T = [(coefficient) i/(standard error of i)].

RESULTS

The 11 sorted categories contained records of 2,232,401 births. Over 11%
(254,015), missing parental age(s) or race(s), were eliminated from this analysis,
as were multiple and interracial births and the Guamian sample, which was too
small for meaningful analysis. Numbers of births and data cells, sex ratios,
confidence limits, and expected chi-squares are in table 2. Each data cell (one
or more observed births with the same unique combination of age and birth-
order values) was expected to contribute 1.0 to the total chi-square. Deviation
from the expected was calculated with Fisher's test (METHODOLOGY).
Sex ratios found for white and black births were consistent with those re-

ported in earlier U.S. studies. Sex ratios for other races (categories are those
used by NCHS [14] to code the data) have not been reported previously for
U.S. births. Sex ratios for Chinese, Hawaiian, "Oriental," and Filipino births
approximated sex ratios for Asians in Asia reported in the literature. The low
American Indian and Japanese sex ratios may have been artifacts of small
sample size.

F-values of linear regression analyses by BMDPIR [18] on all births, collec-
tively and by race, are in table 3. The null hypothesis that no independent
variable(s) affects sex-ratio variation could be rejected for the white-race data
and, because white births were 87% of the total, for the combined data.

Correlations between the three factors being considered as possible indepen-
dent variables are in table 4. For every correlation, P - .005, evaluated with t-
tests (METHODOLOGY), that such an association could occur by chance.

In logistic analyses, all three factors contributed significantly to im-
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TABLE 4

CORRELATIONS BETWEEN FACTORS CONSIDERED FOR POSSIBLE EFFECT ON SEX RATIO

Race of Parental
parents ages Maternal age/birth order Paternal age/birth order

White ............. .7787 .4544 .4008
Black ............. .7794 .5300 .4622
Indian ............ .7480 .6995 .5941
Chinese ......... . 5935 .2961 .2977
Japanese .......... .7243 .4135 .3274
Hawaiian ......... .7774 .6465 .5769
"Oriental" .......... .6479 .3493 .3102
Filipino ........... .5102 .3685 .2294

Combined ....... .7775 .4564 .4047

NOTE: All correlations were significant at P s .005.

provement of goodness of fit of the white-race data (table 5). Coefficients for
the statistically significant logistic models were evaluated with t-tests
(METHODOLOGY); results are in table 6. An estimated sex ratio for any combina-
tion of independent values can be obtained by substituting the variable(s) and
the coefficient(s) into the logistic model (METHODOLOGY).
Mean birth orders of males and females and mean ages of parents of daugh-

ters and sons were compared with chi-square tests, the null hypotheses being
that no differences exist. The results (table 7) were significant for all three
factors.

DISCUSSION

The white-race linear regression and logistic analysis results show that both
paternal age and birth order (or biological factors closely correlated with them)
play a significant part in determining secondary sex ratio.

TABLE 5

LOGISTIC ANALYSIS FOR INTRARACIAL SEX RATIOS

Birth order + Birth order +
Birth Paternal Maternal Parental Paternal Birth order + Parental

Race order age age ages age maternal age ages

White ...... 7.7* 6.5t 4.7t 7.2t 10.1* 3.5 9.8t
Black ...... 0 0.2 0 0 0 0 0
Indian ..... 0.7 0.8 0.6 1.3 1.2 0.9 0.9
Chinese .... 2.9 1.9 0 1.7 3.6 4.1 4.7
Japanese ... 0 0.7 2.1 2.1 0.7 1.8 1.8
Hawaiian ... 0.1 1.1 0.6 1.0 1.1 0.4 0.5
"Oriental" . 0.1 0.3 0.4 0.6 0.3 0.3 0.5
Filipino .... 0.7 2.1 1.4 2.5 2.1 1.1 2.4

NOTE: Chi-square improvement (from unimproved [starting] chi-squares [table 2]) due to independent vari-
ables.

* 99% significance level.
t 95% significance level.
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TABLE 6

COEFFICIENTS FOR WHITE-RACE LOGISTIC MODELS

Standard T-value
Variable Coefficient (b) error (Sb) (blSb)

One factor:
Birth order ........ -0.00274 0.00105 2.62*
Paternal age ....... -0.00082 0.00026 3.12*
Maternal age ....... -0.00065 0.00031 2.09t

Two factor:
Birth order + ...... -0.00146 0.00105 1.40
Paternal age ....... -0.00048 0.00026 1.83t
Paternal age + ..... -0.00048 0.00026 1.83t
Maternal age ....... -0.00019 0.00031 0.62

Three factor:
Birth order + ...... -0.00274 0.00105 2.62*
Paternal age + ..... -0.00052 0.00026 1.96t
Maternal age ....... 0.00023 0.00031 0.73

NOTE: In all cases, intercept (constant) = 0.05916 = In (p/I
0.5149, the white race sample mean sex ratio.

* 99% significance level (10, 217 df).
t 95% significance level.

p)), with p =

In the white-race logistic analysis, birth order plus paternal age or paternal
age plus maternal age significantly improved goodness of fit; birth order plus
maternal age did not. Therefore, the improvement observed when maternal age
but not birth order is one of the independent variable(s) can be attributed to the
strong correlation of maternal age and birth order.
Could all parental-age effects observed be due only to age correlations with

birth order? If so, we should observe a maternal-age "effect" greater than the

TABLE 7

MEAN AGES OF PARENTS OF AND BIRTH ORDERS OF DAUGHTERS AND SONS

Race Offspring sex Sample size Birth order Maternal age Paternal age

White ........ Daughters 1,665,457 2.123 24.95 27.56
Sons 2.117* 24.93* 27.54*

Black ........ Daughters 217,955 2.557 24.05 27.14
Sons 2.558> 24.06> 27.12

Indian .. Daughters 7,416 2.937 24.64 27.74
Sons 2.883* 24.48* 27.49*

Chinese.. Daughters 3,611 1.944 28.29 33.03
Sons 1.873* 28.24 32.68*

Japanese ...... Daughters 1,952 1.815 28.90 31.86
Sons 1.823> 28.56* 31.60t

Hawaiian ...... Daughters 705 2.575 24.28 27.38
Sons 2.541 23.96 26.79*

"Oriental" Daughters 7,425 2.147 27.77 31.87
Sons 2.190>t 27.70 31.83

Filipino .. Daughters 3,684 2.101 28.93 32.98
Sons 2.065 28.69* 32.51*

NOTE: > = Mean birth order/maternal age of sons > that of daughters.
* P G .01.
t P S .05.



observed paternal-age effect since the correlation between maternal age and
birth order was higher than that of paternal age and birth order. However,
observed maternal age effect was less than observed paternal-age effect. If no
paternal-age effect existed, then birth order plus paternal age should not have
improved goodness of fit any more than birth order alone or birth order plus
maternal age. However, birth order plus paternal age improved goodness of fit
as significantly with 2 df as did birth order alone with 1 df. Contrariwise, birth
order plus maternal age did not significantly improve goodness of fit (table 5).
More support for including paternal age and excluding maternal age among

significant factors in the samples studied is provided by the following:
(1) No maternal-age coefficient larger than 10-5 improved goodness of fit, in

a logistic model already incorporating a nonzero birth-order coefficient, when
the algorithm was changed to seek reduction in variation below the lowest chi-
square value reached, instead of below the original chi-square value.

(2) T-tests of coefficients in all three one-factor white-race logistic models
were significant (table 6). However, in the two-factor models, only the pater-
nal-age coefficient was significant; in the three-factor model, the maternal-age
coefficient was not significant. Because of greater variance in paternal age than
in birth-order values, a paternal-age value was more likely to be farther from its
mean and the corresponding paternal-age variable (ith value - mean value)
larger. Therefore, the weight of the paternal-age component (coefficient times
ith variable) is comparable to that of birth order.

(3) Chi-square tests comparing the mean birth orders and ages of parents of
males and females were significant for all three factors (table 7), but the direc-
tion of the difference was consistent only for paternal ages.

Previous linear regression analyses presumed a continuous normally distrib-
uted dependent variable (sex ratio). But for any one birth, the true dependent
variable is the child's sex, and logistic analysis, which assumes a nominal
dependent variable with two mutually exclusive outcomes, such as female or
male sex, appears to be more appropriate. In addition, a sigmoidal curve may
have greater meaning for biological relationships than does a straight line.

Likelihood tests were performed for all logistic analyses; the likelihoods did
not improve significantly with an algorithm designed to reduce chi-square. An
algorithm designed to maximize likelihood might produce different results.
The improvement in goodness of fit (table 5) for birth order alone is greater

than that for birth order plus maternal age, and the improvement with a three-
factor model is less than that for birth order plus paternal age. This is because a
birth-order coefficient that improved goodness of fit was held constant while
the algorithm sought a nonzero maternal-age coefficient that reduced chi-
square variation below the original (but not the modified) value. As discussed
above, modified algorithms could not find acceptable maternal-age coefficients.
The homogeneity of the white- and black-race data might be a peculiarity of

the 1975 sample. However, earlier studies used vital statistics data noting only
maternal race and grouped by age classes. Inadvertent inclusion of interracial
births could increase data heterogeneity; grouping by age classes may have
increased apparent heterogeneity [12]. For example, total x2 for the 76 largest
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cells in our data = 83.7 (P - .25, 76 df). If the data are clustered by 5-year
paternal-age classes, the 10 groups have total x2 = 15.5 (P S .12, 10 df). A
decrease in probability ordinarily is interpreted as an increase in heterogeneity.
The discrepancy between our chi-square results (table 7) and those of Teitel-
baum et al. [6], who observed no paternal-age effect, might also be due to the
censored, grouped, and truncated government data they worked with.
The high correlations (table 4) between the three factors evaluated for their

effect on the sex ratio mean that to evaluate individual effects one would need
stratified samples. One could control for birth order in a sample of first births
large enough so any variation-reducing effects could be observed. Similarly, in
a sufficiently large sample of first births to mothers of the same age, any
observed paternal-age effect could be attributed, with some confidence, to a
paternal factor. It would be of interest to combine several years of birth records
to assemble a large sample of first births. In our study there were 682,146 white
first births. Since only the entire white-race sample, 21/2 times larger, yielded
significant results, we did not analyze the first births separately.
No study could evaluate simultaneously even a fraction of the factors that

have been proposed, over the years, to affect sex-ratio variation. Of these, one
might imagine that for biological reasons maternal age in particular would be
important. However, since the present analysis, performed on ungrouped data,
detected no maternal-age effect, the true number of biologically significant
factors affecting sex ratio may be much smaller than has been proposed.
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